A Necessary and Sufficient Condition for the Primality of Fermat Numbers

نویسندگان

  • Michal Křížek
  • Lawrence Somer
چکیده

We examine primitive roots modulo the Fermat number Fm = 22 m + 1. We show that an odd integer n 3 is a Fermat prime if and only if the set of primitive roots modulo n is equal to the set of quadratic non-residues modulo n. This result is extended to primitive roots modulo twice a Fermat number.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Formalisation of Lehmer’s Primality Criterion

In 1927, Lehmer presented criterions for primality, based on the converse of Fermat’s litte theorem [2]. This work formalizes the second criterion from Lehmer’s paper, a necessary and sufficient condition for primality. As a side product we formalize some properties of Euler’s φ-function, the notion of the order of an element of a group, and the cyclicity of the multiplicative group of a finite...

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

Improved Error Bounds for the Fermat Primality Test on Random Inputs

We investigate the probability that a random odd composite number passes a random Fermat primality test, improving on earlier estimates in moderate ranges. For example, with random numbers to 2200, our results improve on prior estimates by close to 3 orders of magnitude.

متن کامل

Primality Tests for Numbers of the Form

Let k,m ∈ Z, m ≥ 2, 0 < k < 2 and 2 6| k. In the paper we give a general primality criterion for numbers of the form k·2±1, which can be viewed as a generalization of the LucasLehmer test for Mersenne primes. In particular, for k = 3, 9 we obtain explicit primality tests, which are simpler than current known results. We also give a new primality test for Fermat numbers and criteria for 9 · 2 ± ...

متن کامل

Infinitude of Elliptic Carmichael Numbers

In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002